Drip to Power BI

This page provides you with instructions on how to extract data from Drip and analyze it in Power BI. (If the mechanics of extracting data from Drip seem too complex or difficult to maintain, check out Stitch, which can do all the heavy lifting for you in just a few clicks.)

What is Drip?

Drip is an online marketing automation platform.

What is Power BI?

Power BI is Microsoft’s business intelligence offering. It's a powerful platform that includes capabilities for data modeling, visualization, dashboarding, and collaboration. Many enterprises that use Microsoft's other products can get easy access to Power BI and choose it for its convenience, security, and power.

With high-value use cases across analysts, IT, business users, and developers, Power BI offers a comprehensive set of functionality that has consistently landed Microsoft in Gartner's "Leaders" quadrant for Business Intelligence.

Getting data out of Drip

You can collect data from Drip’s servers using webhooks and user-defined HTTP callbacks. Set up the webhook in your Drip account, and define a URL that your script listens to and from which it can collect the data.

Sample Drip data

Once you've set up webhooks and HTTP endpoints, Drip will begin sending data via the POST request method. Data will be enclosed in the body of the request in JSON format. Here's a sample of what that data might look like.

{
  "id": "z1togz2hcjrkpp5treip",
  "status": "active",
  "email": "john@acme.com",
  "custom_fields": {
    "name": "John Doe"
  },
  "tags": ["Customer", "SEO"],
  "time_zone": "America/Los_Angeles",
  "utc_offset": -440,
  "created_at": "2017-06-21T10:31:58Z"
  "ip_address": "123.123.123.123",
  "user_agent": "Mozilla/5.0",
  "lifetime_value": 2000,
  "original_referrer": "https://google.com/search",
  "landing_url": "https://www.drip.co/landing",
  "prospect": true,
  "base_lead_score": 30,
  "lead_score": 65,
  "user_id": "123"
}

Preparing Drip data

You need to map all the data fields in the JSON data from your webhook into a schema that can be inserted into your database. For each value in the response, you need to identify a predefined datatype (i.e. INTEGER, DATETIME, etc.) and build a table that can receive them.

Loading data into Power BI

You can analyze any data in Power BI, as long as that data exists in a data warehouse that's connected to your Power BI account. The most common data warehouses include Amazon Redshift, Google BigQuery, and Snowflake. Microsoft also has its own data warehousing platform called Azure SQL Data Warehouse.

Connecting these data warehouses to Power BI is relatively simple. The Get Data menu in the Power BI interface allows you to import data from a number of sources, including static files and data warehouses. You'll find each of the warehouses mentioned above among the options in the Database list. The Power BI documentation provides more details on each.

Analyzing data in Power BI

In Power BI, each table in the data warehouse you connect is known as a dataset, and the analyses conducted on these datasets are known as reports. To create a report, use Power BI’s report editor, a visual interface for building and editing reports.

The report editor guides you through several selections in the course of building a report: the visualization type, fields being used in the report, filters being applied, any formatting you wish to apply, and additional analytics you may wish to layer onto your report, such as trendlines or averages. You can explore all of the features related to analyzing and tracking data in the Power BI documentation.

Once you've created a report, Power BI lets you share it with report "consumers" in your organization.

Keeping Drip data up to date

Once you’ve coded up a script or written a program to get the data you want and move it into your data warehouse, you’re going to have to maintain it. If Drip modifies its webhook implementation, or sends a field with a datatype your code doesn't recognize, you may have to modify the script. If your users want slightly different information, you definitely will have to.

From Drip to your data warehouse: An easier solution

As mentioned earlier, the best practice for analyzing Drip data in Power BI is to store that data inside a data warehousing platform alongside data from your other databases and third-party sources. You can find instructions for doing these extractions for leading warehouses on our sister sites Drip to Redshift, Drip to BigQuery, and Drip to Snowflake.

Easier yet, however, is using a solution that does all that work for you. Products like Stitch were built to solve this problem automatically. With just a few clicks, Stitch starts extracting your Drip data via the API, structuring it in a way that is optimized for analysis, and inserting that data into a data warehouse that can be easily accessed and analyzed by Power BI.